CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

	Page 1	Mark Scheme	Syllabus	Paper
		A AND AS LEVEL – JUNE 2003	9709	2
1	EITHER:	State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$ or corresponding equation Expand and solve a linear inequality, or equivalent Obtain critical value $1\frac{1}{2}$) ² ,	B1 M1 A1 A1
	OR:	State correct answer $x < 1\frac{1}{2}$ (allow \leq) State a correct linear equation for the critical value encoded Solve the linear equation for <i>x</i> Obtain critical value $1\frac{1}{2}$, or equivalent State correct answer $x < 1\frac{1}{2}$.g. 4 - <i>x</i> = <i>x</i>	
	OR:	State the critical value $1\frac{1}{2}$, or equivalent, from a graph inspection or by solving a linear inequality State correct answer $x < 1\frac{1}{2}$	ohical metho	od or by B3 B1
				[4]
2 (i	i) EITHER:	Expand <i>RHS</i> and obtain at least one equation for <i>a</i> Obtain $a^2 = 9$ and $2a = 6$, or equivalent State answer <i>a</i> = 3 only		M1 A1 A1
	OR:	Attempt division by $x^2 + ax + 1$ or $x^2 - ax - 1$, and obta Obtain $a^2 = 9$ and either $a^3 - 1$ la + 6 = 0 or $a^3 - 7a - 6$ State answer $a = 3$ only	iin an equat = 0, or equ	ion in <i>a</i> M1 ivalent A1 A1
		[Special case: the answer $a = 3$, obtained by trial and inspection, or with no working earns B2.]	d error, or b	y [3]
(ii) Substitute for <i>a</i> and attempt to find zeroes of one of the quadratic fac		ic factorsM1		
		Obtain one correct answer State all four exhibits $1/(2 + \sqrt{5})$ and $1/(2 + \sqrt{12})$		A1
		State all four solutions $\frac{1}{2}(-3 \pm \sqrt{5})$ and $\frac{1}{2}(3 \pm \sqrt{13})$,	or equivale	nt A1
				[3]
3 (i	i)	State or imply indefinite integral of e^{2x} is $\frac{1}{2}e^{2x}$, or equivalent obtain answer $R = \frac{1}{2}e^{2p} - \frac{1}{2}$, or equivalent	livalent	B1 M1 A1
				[3]
(ii	i)	Substitute $R = 5$ and use logarithmic method to obtain $2p$ Solve for p Obtain answer $p = 1.2$ (1.1989)	in an equati	M1* M1 (dep*) A1
				[3]

Page 2	Mark Scheme Syllabus	Paper
	A AND AS LEVEL – JUNE 2003 9709	2
4 (i)	Use tan (A ± B) formula to obtain an equation in tan x tan $x + 1$ (1 - tan x)	M1
	State equation $\frac{\tan x + 1}{1 - \tan x} = 4 \frac{(1 - \tan x)}{1 + \tan x}$, or equivalent	A1
	Transform to a 2- or 3-term quadratic equation Obtain given answer correctly	M1 A1
		[4]
(ii)	Solve the quadratic and calculate one angle, or establish that $t = \frac{1}{3}$, 3 (only)	M1
	Obtain one answer, e.g. $x = 18.4^{\circ} \pm 0.1^{\circ}$	A1
	Obtain second answer $x = 71.6^{\circ}$ and no others in the range	A1
	[Ignore answers outside the given range]	[3]
5 (i)	Make recognizable sketch over the given range of two suitable	
	graphs, e.g. $y = 1n x$ and $y = 2 - x^2$ State or imply link between intersections and roots and justify	
	given answer	B1
		[3]
(ii)	Consider sign of In x - (2 - x^2) at $x = 1$ and $x = 1.4$, or equivalent Complete the argument correctly with appropriate calculation	M1 A1
		[2]
(iii)	Use the given iterative formula correctly with $1 \le x_n \le 1.4$	M1
	Obtain final answer 1.31 Show sufficient iterations to justify its accuracy to 2d.p.,	A1
	or show there is a sign change in the interval (1.305, 1.315)	A1
		[3]
6 (i)	Attempt to apply the chain or quotient rule	M1
	Obtain derivative of the form $\frac{k \sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
	Obtain correct derivative $-\frac{\sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
	Explain why derivative, and hence gradient of the curve, is always negative	A1
		[4]
(ii)	State or imply correct ordinates: 1, 0.7071, 0.5	B1
	Use correct formula, or equivalent, with $h = \frac{1}{8\pi}$ and three ordinate Obtain answer 0.57 (0.57220) ± 0.01 (accept 0.18 π)	es M1 A1
		[3]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	2
iii)	Justify the statement that the rule gives an over-estimate		
	Justify the statement that the rule gives an over-estimate		

[1]

7 (i) State
$$\frac{dx}{d\theta} = 2 - 2\cos 2\theta$$
 or $\frac{dy}{d\theta} = 2\sin 2\theta$ B1

Use
$$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$$
 M1

Obtain answer
$$\frac{dy}{dx} = \frac{2\sin 2\theta}{2 - 2\cos 2\theta}$$
 or equivalent A1

[5]

(ii)	Substitute $\theta = \frac{1}{4}\pi$ in $\frac{dy}{dx}$ and both parametric equations	M1
	Obtain $\frac{dy}{dx} = 1, x = \frac{1}{2}\pi - 1, y = 2$	A1

Obtain equation
$$y = x + 1.43$$
, or any exact equivalent A1 $\sqrt{}$

[3]

(iii)	State or imply that tangent is horizontal when $\theta = \frac{1}{2}\pi$ or $\frac{3}{2}\pi$	B1
	Obtain a correct pair of x, y or x- or y-coordinates	B1
	State correct answers (π , 3) and (3 π , 3)	B1

[3]