CAMBRIDGE

INTERNATIONAL EXAMINATIONS

June 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02
MATHEMATICS
Paper 2 (Pure 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	2

1 EITHER: State or imply non-modular inequality $(x-4)^{2}>(x+1)^{2}$, or corresponding equation
Expand and solve a linear inequality, or equivalent M1
Obtain critical value $11 / 2 \quad$ A1
State correct answer $x<11 / 2 \quad$ (allow $\leq) \quad$ A1
OR: \quad State a correct linear equation for the critical value e.g. $4-x=x+1 \quad B 1$
Solve the linear equation for x M1
Obtain critical value $11 / 2$, or equivalent A1
State correct answer $x<1 \frac{1}{2}$ A1
OR: \quad State the critical value $11 / 2$, or equivalent, from a graphical method or by inspection or by solving a linear inequality
State correct answer $x<11 / 2$

2 (i) EITHER: Expand RHS and obtain at least one equation for a M1
Obtain $a^{2}=9$ and $2 a=6$, or equivalent A1
State answer $a=3$ only A1
OR: \quad Attempt division by $x^{2}+a x+1$ or $x^{2}-a x-1$, and obtain an equation in a M1 Obtain $a^{2}=9$ and either $a^{3}-1$ la $+6=0$ or $a^{3}-7 a-6=0$, or equivalent A1 State answer $a=3$ only
[Special case: the answer $a=3$, obtained by trial and error, or by inspection, or with no working earns B2.]
(ii) Substitute for a and attempt to find zeroes of one of the quadratic factorsM1 Obtain one correct answer
State all four solutions $1 / 2(-3 \pm \sqrt{5})$ and $1 / 2(3 \pm \sqrt{13})$, or equivalent

3 (i) $\begin{array}{ll}\text { State or imply indefinite integral of } e^{2 x} \text { is } 1 / 2 e^{2 x} \text {, or equivalent } & \text { B1 } \\ & \text { Substitute correct limits correctly }\end{array}$
Obtain answer $R=1 / 2 e^{2 p}-1 / 2$, or equivalent
(ii) Substitute $R=5$ and use logarithmic method to obtain an equation in $2 p$

M1*
Solve for p M1 (dep*)
Obtain answer $p=1.2$ (1.1989 ...)

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	2

4 (i)	Use $\tan (A \pm B)$ formula to obtain an equation in $\tan x$ State equation $\frac{\tan x+1}{1-\tan x}=4 \frac{(1-\tan x)}{1+\tan x}$, or equivalent Transform to a 2- or 3-term quadratic equation Obtain given answer correctly	M1 A1 M1 A1
(ii)	Solve the quadratic and calculate one angle, or establish that $t=1 / 3,3$ (only) Obtain one answer, e.g. $x=18.4^{\circ} \pm 0.1^{\circ}$ Obtain second answer $x=71.6^{\circ}$ and no others in the range [Ignore answers outside the given range]	M1 A1 A1 [3]
5 (i)	Make recognizable sketch over the given range of two suitable graphs, e.g. $y=1 \mathrm{n} x$ and $y=2-x^{2}$ State or imply link between intersections and roots and justify given answer	$\mathrm{B} 1+\mathrm{B} 1$
(ii)	Consider sign of $\ln x-\left(2-x^{2}\right)$ at $x=1$ and $x=1.4$, or equivalent Complete the argument correctly with appropriate calculation	M1 A1
(iii)	Use the given iterative formula correctly with $1 \leq x_{n} \leq 1.4$ Obtain final answer 1.31 Show sufficient iterations to justify its accuracy to 2d.p., or show there is a sign change in the interval (1.305, 1.315)	M1 A1 A1

6 (i) | Attempt to apply the chain or quotient rule | |
| :--- | ---: |
| Obtain derivative of the form $\frac{{k \sec ^{2} x}_{\left(1+\tan ^{2}\right)^{2}} \text { or equivalent }}{}$ | M1 |
| Obtain correct derivative $-\frac{\sec ^{2} x}{(1+\tan x)^{2}}$ or equivalent | |\quad A1

(ii) State or imply correct ordinates: 1, 0.7071.., 0.5 B1

Use correct formula, or equivalent, with $h=1 / 8 \pi$ and three ordinates M1
Obtain answer $0.57(0.57220 \ldots) \pm 0.01$ (accept 0.18π) A1

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	9709	2

(iii) Justify the statement that the rule gives an over-estimate

7 (i) State $\frac{d x}{d \theta}=2-2 \cos 2 \theta$ or $\frac{d y}{d \theta}=2 \sin 2 \theta$
Use $\frac{d y}{d x}=\frac{d y}{d \theta} \div \frac{d x}{d \theta}$
M1
Obtain answer $\frac{d y}{d x}=\frac{2 \sin 2 \theta}{2-2 \cos 2 \theta}$ or equivalent A1

Make relevant use of $\sin 2 A$ and $\cos 2 A$ formulae
(indep.) M1
Obtain given answer correctly
A1
(ii) Substitute $\theta=1 / 4 \pi$ in $\frac{d y}{d x}$ and both parametric equations M1

Obtain $\frac{d y}{d x}=1, x=1 / 2 \pi-I, y=2$
A1
Obtain equation $y=x+1.43$, or any exact equivalent
(iii) State or imply that tangent is horizontal when $\theta=\frac{1}{2} \pi$ or $3 / 2 \pi \quad$ B1

Obtain a correct pair of x, y or x - or y-coordinates B1
State correct answers $(\pi, 3)$ and $(3 \pi, 3) \quad$ B1

